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The direct use of crossing relations for pion-pion scattering amplitudes, outside the triangle bordered by 
the lines s — 0, t — 0, and u = 0 in the Mandelstam diagram, is not generally possible. This is because the 
regions of convergence of the usual Legendre expansions for the amplitudes are restricted by cross-channel 
cuts in appropriate cos0 variables. These convergence difficulties may be relieved by suitably decomposing 
each amplitude into two terms. One term differs in analytic properties from the actual amplitude in that 
portions of the cross-channel cuts in cos# nearest cos0 = =fc 1 are absent. The Legendre expansion of this term 
has a larger region of convergence than that for the actual amplitude. The other term in the decomposition is 
expressed in terms of the Legendre series for physical scattering in the cross channels. The amplitudes so 
represented may now be continued from one physical region to another, and crossing relations may, in 
general, be directly applied outside the triangle. As a simple application of the formalism, the existence and 
approximate mass and width of the p meson are found to be simple consequences of analyticity, unitarity, and 
crossing symmetry. 

for this is well known. The Legendre expansion in the 
physical region of the s channel, for example, fails to 
converge for ^<0. The / and u channels give rise to 
branch cuts along the real axis in the cos08 plane (s 
fixed) starting at cos0s=±(s+4)/(.s—4). For s<0, 
(s+4)/ (s—4) becomes less than unity in magnitude 
and, consequently, the Legendre series in cos0s will 
not converge.11 Similar results hold for the t and u 
channels. Thus the triangle enclosed by ^=0, /=0, and 
u=0 is the only common region of convergence of the 
Legendre series for the invariant amplitudes in the 
three physical regions. 

In this paper, we present a method for using the 
crossing relations outside the triangle. The convergence 
difficulties just discussed are eliminated as follows. We 
expand in a Legendre series, not the actual invariant 
amplitudes, but "modified amplitudes" in which por
tions of the cuts in cos0 nearest cos0=dbl have been 
removed. The regions of convergence of the Legendre 
series for the modified amplitudes are thus larger than 
those for the actual ones. The differences between the 
original and modified amplitudes are expressible in 
terms of the physical scattering in the crossed channels. 
We show in the following section that the actual ampli
tudes, when decomposed into these modified amplitudes 
and remainder terms, are easily continued analytically 
from one physical region to another. The crossing 
relations may then be used directly even outside the 
triangle. 

The extra supply of "practical" crossing relations 
thus obtained should prove useful in any program 
which involves trial amplitudes, partially satisfying 
unitarity and analyticity requirements and containing 
parameters to be determined by means of crossing 
conditions, dispersion relations, etc.12 

In Sec. II, we describe the construction of the modi
fied amplitudes and remainders and present the crossing 

11 See, e.g., Sees. 15.4 and 15.41 of E. T. Whittaker and G. N. 
Watson, Modern Analysis (Cambridge University Press, New 
York, 1952). 

12 See, e.g., Refs. 10 for a program of this type. 
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I. INTRODUCTION 

SINCE the formulation by Chew and Mandelstam1 

of the double dispersion relation approach to pion-
pion scattering, various approximation schemes have 
been used in order to construct the pion-pion scattering 
amplitude.2"10 

Although different in many details, these schemes 
are all more or less similar in their employment of 
crossing relations. These relations are used (1) to 
establish connections between the invariant isotopic 
spin amplitudes inside the triangle bordered by the 
lines s=0, 2 = 0, and u=0 in the Mandelstam plot and 
(2) to express the nearby left-hand discontinuities of 
the partial-wave amplitudes in terms of physical scat
tering in the crossed channels. 

Now as long as we use Legendre expansions for the 
invariant amplitudes in the three physical regions of 
the Mandelstam plot, it is not generally possible to 
use crossing relations directly at points outside the 
triangle. They cannot be used at all at such points 
corresponding to physical scattering angles. The reason 

* This work supported in part by the U. S. Air Force Office of 
Scientific Research and the National Science Foundation. 

t On leave of absence from the Department of Physics, Osaka 
University, Osaka, Japan. 
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FIG. 1. The pion-pion inter
action ir-jrir <-> ir-\-ir. 

ft.* 

relations in terms of these. Approximate crossing re
lations for the low-energy region are discussed in Sec. 
I I I . 

The practical usefulness of the formalism of Sees. I I 
and I I I can only be determined by detailed calculation. 
In order to gain some insight into the matter, we de
scribe, in Sec. IV, a crude calculation of low-energy 
I=J=\ pion-pion scattering. The (N/D) -effective 
range method of Balazs5 is used to construct a unitary 
partial-wave amplitude. Two pole terms are used to 
account for the left-hand singularities and inelastic 
effects. The pole positions are determined using Balazs' 
criterion, and the residues are determined by using an 
approximate form of the crossing relations of Sec. I I I . 
This procedure yields values for the residues corre
sponding to a resonance at a c m . energy of 575 MeV 
with a half-width of 120 MeV. These results are about 
the same as those obtained by Balazs using a fixed s 
dispersion relation.5 Unlike the Balazs procedure and 
other "bootstrap" techniques,7 the present method 
does not involve the a priori assumption of the existence 
of a resonance. The resonance, in the present calcu
lation, seems to arise as a natural consequence of 
analyticity, unitarity, and the crossing relations.13 

Section V is devoted to a summary and some remarks 
on work in progress. 

II. MODIFIED AMPLITUDES AND CROSSING 
RELATIONS OUTSIDE THE TRIANGLE 

In order to make our argument clear, we first review 
those aspects of the work of Chew and Mandelstam1 

which are relevant for our purpose. 
The pion-pion scattering amplitude is expressed in 

terms of the three invariant functions A, B, C, as 

A (stu)dap8y6+B(stu)8aydfi$+C(stu)da&dpv, (2.1) 

where a, /?, 5, y are the isotopic spin indices (see Fig. 1) 
and s, t and u are defined by 

s=(pi+p2)2, 

t=(pi+pt)*, (2.2) 

13 This is consistent with the point of view expounded, e.g., in 
Refs. 9 and 10. 

The pion mass is taken to be unity so that pi2=pt2 

= i>32=^42= 1 and s+t+u=4:. 
In the s channel, s is the total cm . energy squared 

and t is the cm. momentum transfer squared. In terms 
of the square of the center-of-mass momentum vs and 
scattering angle 08> we have 

/ = - 2 P . ( 1 - C O S 0 , ) , (2.3) 

u=—2v8(l+cosd8). 

In the t channel, s becomes the cm. momentum transfer 
squared and / the square of the total c m . energy. Thus, 

s=— 2^(1 — cosflf), 

#=—2J/*(1+COS0*) , 

(2.4) 

where vt and Bt are the cm. momentum squared and 
scattering angle, respectively. 

We denote by AI(s) tu) or Ar(vs, cos0s) the amplitude 
for isotopic spin-/ scattering in the s channel. Note 
that we put the energy variable to the left of the semi
colon in the former expression. Similarly, AJ (t; su) or 
A^vt, cosdt) denotes the isotopic spin / amplitude in 
the t channel, e t c The A7 for the s channel are related 
to A, B, and C by 

A°=3A+B+C, 

AX=B-C, 

A2=B+C. 

(2.5) 

The crossing relations implied by generalized Pauli 
statistics are 

A(stu)=A(sut), 

B (stu) = C (sut), 

A(stu) = C(uts)9 

B (stu) = B (uts), etc. 

(2.6) 

(2.7) 

By inserting these relations into (2.5), we obtain the 
crossing relations for A J : 

where 

and 

AI(s;tu) = ̂ 2 ari>Ar(t;su), 

AI(s)tu)^Y,^irAI,{u)ts), 
v 

J, J ' = 0 , 1, and 2 

(2.8) 

(2.9) 

aw = 

Pil> 

[1/3 1 
1/3 1/2 

Ll/3 - 1 / 2 

1/3 - 1 
- 1 / 3 1/2 

5/3 ' 
- 5 / 6 
1/6 J 

5/3' 
5/6 

1/3 1/2 1/6J 

(2.10) 

(2.11) 
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The Ar(s; tu) satisfy the dispersion relations 

AT(s;tu) = - dtf + - / du' , (2.12) 
TJ4 t' — t TJQ U' — U 

where subtractions are ignored. At1 {si) and Au
T(su) 

are the absorptive parts of AI{s\tu) in the t and u 
channels, respectively. 

The crossing relations in terms of partial-wave 
amplitudes are easily obtained by expanding both sides 
of (2.8) [or (2.9)] in Legendre series.14 

s=4-d 

A*(s; tu)^Al{vs, cos0s) 

£ (2/+lM*'WPz(cos0s) ; 
l even (7 =0, 2) 
J odd (1=1) 

AI{t\SU)^=AI{yt, COSOt) 

£ ( 2 / + W M P z ( c o s 0 O . 
I even (I =0, 2) 
I odd (7=1) 

(2.13) 

(2.14) 

The variables on the left- and right-hand sides of (2.13) 
and (2.14) are related through (2.3) and (2.4), re
spectively. Thus vt, cos0*, v8, and cos0s satisfy the 
relations 

vt=hv.(l+co&6.)-(v.+ l), (2.15) 

cos0*=-
vs(l+cosds) + 2(vs+l) 

v s(l+cos0 s)-2(*vfl) 
(2.16) 

The partial-wave amplitudes AiT{vs) and AiT(vt) are, 
of course, the same functions of their respective vari
ables vs and vu We have 

ASM 
J-f d cos6Pi(cosd)AI(v, cos0). (2.17) 

Although this procedure leads to simple crossing 
relations, we encounter the inconvenience mentioned 
in the Introduction. Namely, the common domain of 
convergence of the Legendre series for both sides of 
(2.8) and (2.9) is limited to the inside of the small 
triangle bordered by the lines s=0, 2=0, and u==0 in 
the Mandelstam plot (see Fig. 2). The Legendre series 
(2.13), for example, converges in the inside of a certain 
ellipse with foci (±1,0) in the complex cos0s plane 
(vs fixed), if, and only if, the original function 
AT(vs, cos0s) is analytic in the same ellipse.11 It is, 
however, well known1 that A (v8y cos0s) has branch 
points at cos0s=±(l+2/i>s). Thus, when vs< — 1 [or 
s<0] , these branch points are in the interval — 1 <J cos0s 
^ + 1 on the real axis, and we have no region where the 
convergence of the series is guaranteed. These circum
stances are very clearly seen on the Mandelstam plot. 
We see that when s<0, the two crossed cuts starting 

14 The restriction of ( ^ ) * for ( ^ V follows from (2.5) 

and (2.6), which imply A*(stu) = X-iyA^sut). 

s-0 s=4 

cosfl, =-/f 

/cos0s=-n 

FIG. 2. The Mandelstam diagram for TT-TT scattering. The region 
of convergence of the expansion (2.20) (with cos0s physical) and 
^<4 is given by the triangle e/35. The common region of con
vergence of the expansions (2.20) (with cos0s physical) and (2.14) 
is given by the trapezoid a(3y8. The matching points (4.17) are 
indicated by the symbol e . For a = 16, the regions of nonvanishing 
double spectral functions are beyond the region indicated in the 
figure. 

from t—4: and w=4 extend into the region — 1<JCOS0S 

<$ + 1 . The thresholds for these branch cuts correspond 
to the above-mentioned branch points in the cos0s 

plane. Similar results hold for the expansion (2.14). In 
particular, the expansion fails to converge for /<0. 
Finally, the Legendre expansion for physical scattering 
in the u channel fails to converge for u<0, and we thus 
verify our previous statement concerning the common 
domain of convergence. 

In order to overcome this difficulty, we remove from 
A!(s; tu) the contributions due to nearby singularities 
of the crossed cuts. This results in a modified amplitude 
A1 given explicitly by 

AI(s'9tu) = AI(s;tu)--FI(situ)9 (2.18) 
where 

1 ra A/is?) 1 ra AJW) 
F^sytu)^- / it' + - \ du' . (2.19) 

WJt t'~-t IT J A U' — U 

a is an arbitrary constant (a>4), which is to be chosen 
conveniently in the course of numerical calculations. 

The crossed cuts of A^s'^tu) now start from t=a 
and u—a [see Eq. (2.12)]. Thus the Legendre series 
expansion of Al{s\ tu), i.e., 

AT(s; tu)=AT(v8, cos0s) 

l even ( I : 

I odd (7 = 
=0,2) 
1) 

(2/+l)Pi(cos0s)lz
I(^s) (2.20) 
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and 

&x 
l r1 

d cosdsPi(cosds)A
I(vS} cosds) (2.21) 

converges for vs>— \a. By inserting (2.18) into (2.21) 
we obtain, for each /, the relations 

A,*(V9) = Af(; 
1 r1 

v8) / do 
2j-i 

co$dsPi(cosds) 

XF1^ cos0s) 

=Af(v.)-Ff(v,). (2.22) 

Thus, AI(s\tu) has the following modified expansion 
for vs>—la: 

AT(s; tu) = AI(v8, cosd8) 

E (2/+l)Pz(cos0 s) 
/ even (7 =0, 2) 
/odd (7=1) 

X [ ^ W - i V W : i + / ^ ; tu). (2.23) 

Note that the summations on the right-hand side of 
(2.23) cannot be taken separately, since each diverges 
individually. In Fig. 2, the domain of convergence of 
the expansion (2.23), corresponding to — l^cos0 s<Jl , 
is shown. This domain does not contain any of the 
physical region for the t channel. However, since 
AT(t; su) is analytic in the strip 0 < J ^ 4 , this function 
can be easily continued into this strip in terms of the 
Legendre series (2.14). Thus we have a common domain 
where both expansions (2.23) and (2.14) converge (see 
Fig. 2). 

Our final task in this section is to show that FT(s; tu) 
and FiT(vs) in (2.23) can also be expressed in terms of 
the Legendre expansions of the physical amplitudes. 
The function At

T(st) in (2.19) and (2.12) is the dis
continuity of the t cut of AI(s;tu). By using the 
crossing relation (2.8), we can express this discontinuity 
in terms of the imaginary part of A1^) su), as long as 
we remain outside the region of nonvanishing double 
spectral functions (s>—32).1 After expressing this 
imaginary part in terms of its Legendre series, we obtain 

A/ist^Z air £ ( 2 / + l ) p / l + — ) 
V l even (7=0,2) \ / — 4 / 

/odd (7=1) 
X I i W ( i ' - l ) . (2-24) 

We have used the relations cos0t=[2s/(t—4)]+l and 
vt— (JO — 1. Similarly, we have 

AUI(SU) = ZPIP E (21+1) 
I' /even (7 =0,2) 

/odd (7=1) 

XP/ -1 — ) ImAf'&u-l). (2.25) 
\ U—4:/ 

These expansions converge for s> — 32.1 Substitution of 

(2.24) and (2.25) into (2.19) gives 

1 
FT(s;tu)-- - f dx( 

+ (-)J 

[ > + 2 ^ ( l - cos0 s ) ] 

1 

O + 2 J > S ( 1 + C O S 0 S ) ] 

X £ w E (2J+1) 
/even (7'=0, 2) 
/odd (7'=1) 

- ) 
x—4/ 

XlmA/(ix-l)Pill 

In obtaining (2.26), we have used 

P J ( - 2 ) = ( - ) ' P , W , 
and 

Finally, FiT(vs) is given by 

1 r1 

Fil(v,) = - / <?cos0sP((cos6gPr(>8)cos08) 
2 7- i 

(2.26) 

(2.27) 

(2.28) 

1 ra I x \ 
— / dxQl[l+—) 
wvsJi \ 2vJ 

I' V even (7' =0, 2) 
/ 'odd (7'=1) 

XPi\ 1 
2s 

X—4:, 
ImA^'ftx-l), (2.29) 

where Qi(z) is the Legendre function of the second type 
defined by15 

i rl Piiy) 
0,(2) = - / dy. (2.30) 

2 y _ i z—y 

Substitution of A(s;tu), given by (2.23), (2.26), 
and (2.29), into the left-hand side of (2.8) and (2.9), 
thus yields crossing relations, expressed entirely in 
terms of partial-wave Legendre expansions, which are 
valid for a region outside the small triangle. 

III. APPROXIMATE CROSSING RELATIONS AT 
LOW ENERGY AND THE CONSTRUCTION OF 

UNITARY PARTIAL-WAVE AMPLITUDES 

In Sec. I I , we set up exact crossing relations in terms 
of Legendre expansions. In this section, we propose a 
low-energy approximation scheme based, in part, on 
these relations. 

A basic assumption in our approach is that for 
sufficiently small vt, only s-wave (1=0, 2) and p-w&ve 
(7=1) terms need be retained in the expansion (2.14) 
for the right-hand side of the crossing relation (2.8). 
This assumption, which is based on the vl threshold 

15 Reference 11, p. 316. 
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behavior of Ai1 imposed by the Mandelstam repre
sentation1 (or in less precise terms, the finite range of 
interaction), is more or less common to all previous 
approaches.1-10 

For reasons discussed below, it is convenient to 
consider cos0s on the left-hand side of (2.8) to be 
physical (|cos0s| <J1). Therefore, when using (2.8), we 
must continue the Legendre series (2.14) into the region 
cos0*< — 1 (see Fig. 2). The region where the above 
approximation for (2.14) remains valid must then be 
carefully studied. We discuss this point in the next 
section. 

Now consider the left-hand side of the crossing re
lation (2.8). We expand this as (2.18) and (2.20) and 
retain only the s and d waves for 1=0, 2 and the p and 
/ waves for 1= 1. In this case, the expansion coefficient 
is not AiT(vs) but Aiz(va). For points outside the tri
angle in the unphysical region with |cos0 s |<l, we 
have vs< — l. Now, for vs less than — 1 but considerably 
greater than — Ja, we may justify our retention of only 
the first few partial-wave terms of (2.20) as follows. 

First, we see from (2.12), (2.18), and (2.20) that 
AiT(vs) is analytic in the interval (—%a<vs<0) on the 
real axis. Note that AiT(vs) is only analytic in the 
interval (—lO s <0) on the real axis. Furthermore, 
AiT{vs) and AiT(v8) have the same v8

l threshold be
havior. Since A/^Vs) has its left-hand cut starting 
further out than that of AiT{v8) [this corresponds to a 
shorter range "effective" interaction for AiT(v8)~], the 
A i1 should be more suppressed at large I and small v8 

than the corresponding A i1. 
The situation may perhaps be clarified by considering 

A i1 as a function of k=\/v8. Then AiI{k) has the 
analytic structure shown in Fig. 3. AiT(k) has a Taylor 
expansion about k = 0 and we thus expect that Aix{k) 
for large / is still small on the imaginary axis as long as 
\k\ is considerably less than the smaller of \\Ja or V3, 
the radius of convergence of the Taylor expansion. The 
situation is quite different for AiT(k)^ where \\/a in 
Fig. 3 is effectively 1. In this case, the radius of con
vergence is one and we would expect A-f{jz) to be small 
only for \k\ considerably less than unity. 

In (2.20), the d-wave contribution for 7=0, 2 and 

FIG. 3. The ana
lytic structure of 
A iJ{k) where k — \/v; 
the values ±&/ 
= ± \ # correspond to 
the inelastic thresh
old. 

-kx 

k-V7 
Plow 

>4 

kiV3 

iVo" 

the /-wave contribution for / = 1 can easily be elimi
nated by choosing the matching point for the crossing 
relation (2.8) on the line cos0s= —V§ a n d cos0s= — VI> 
respectively. On these lines P2(cos0s) and P3(cos0s), 
respectively, vanish. We now see the reason for re
stricting cos0* to physical values. 

Finally, in FT(v8, cos0s) and FiT(v8) given by (2.26) 
and (2.29), respectively, we retain only the s- and p-
wave contributions. This approximation should be 
fairly good as long as (\a— 1) is <3 . 

In summary, the approximate expressions for (2.8), 
appropriate for the low-energy region, are 

^ O ° W - F O 0 W + F ° ( V S , - V i ) 

= Mo°W+3^i 1 Wcos0 ,+ ( |Mo 2 W, (3.1) 

= J i4o°W+t^i 1 W cos0, -po 2 (^) , (3.2) 

^ W - W W + P ( p „ - V I ) 
- W M - W M c o s M - W M , (3.3) 

where vt and cos0* are given by (2.15) and (2.16), 
respectively, with cos0,= - V i m (2.26) and cos0s 

= - A / 1 in (2.27). Also, 

F°(y„cos0.): 
1 r r 1 

=— / dx\ 
7T J 4 \-X+2vs(\ 

1 

(1 —cos0s) x+2v8(l+cosvs). 

/ 8M-1)\ 
i Im^0°(^-l)+3( 1+ ) 

V X—4: / 

XImA1
l(ix~l)+(%) Iim40

2(i*-1) j , (3.4) 

pi(v99 cos0s) = - / dx\ | Im^o°(^™l)+-( 1+ ) 
wj* LS+2P , (1 -COS0 . ) tf+2*>8(l+cos08)JI 2 \ s - 4 / 

X l m ^ ! 1 ^ - ! ) - ! I m ^ o 2 ( ^ ~ l ) j , (3-$) 
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1 / - r 1 1 "If 3 / 8(* .+ l ) \ 
P(ve, cos08) = - / dx\ + | I m ^ 0 ° ( } x - 1 ) — ( 1 + ) 

TTJ4 LX+2J>S(1-COS6S) ; H - 2 K , ( 1 + C O S 0 , ) J 1 2 V x-A / 

X 1mA i1 (ix-1)+| 1mA „2 Q x - 1 ) 1 , (3.6) 

1 f [ x \ r / 8 ( i v M ) \ 
^ o ° W = — / dxQ0( 1 + — ) § I m 4 0 ° ( i x - l ) + 3 ( 1 + ) 

XImAt(ix-l)+(l) I m ^ o 2 ( i * - l ) l , (3.7) 

1 f I x \ r 3 / 8(p .+ l ) \ -l 
FHvs) = — / <foe,( 1 + — ) I Inu4 .<>( i*- l )+- ( 1 + - ) I m i l i ^ i a f - l ) - ! Im,4o 2 Q*- l ) , (3.8) 

7rys^4 \ 2vJ\- 2\ x—4 / J 
1 /•* / x 

« W = - / '<fc0o(l+-
TV, ,/4 2^S/L 

3 / 8 ( x s + l ) \ -i 
\ Imi4 0 °( i*-1) — ( 1+- ) ImAfdx-V+l ImA0

2(ix-l) . (3.9) 
JL V *v T: ' J 

These relations should be approximately valid for 
points along the line cos0s= — \/\ (or — \ / f ) and v8 in, 
but not too close to, the end points of the interval 
(-\a<vs<0). 

Of course, (3.1)-(3.9) represent only one possible 
way of using the crossing relations at low energy. 
These approximate relations are in accord with the 
original "low-energy philosophy" of Chew and 
Mandelstam.1 

We have not as yet discussed the actual construction 
of partial-wave amplitudes with the required unitarity 
and analyticity properties. With regard to these, there 
are a number of possible approaches. One could, for 
example, use a simple pole approximation for left-hand 
cuts in the N/D method.2'3'5 A more accurate method 
would be to use crossing relations to express the nearby 
left hand cuts in terms of, say, s- and p-w&ve scattering 
in the crossed channels and to use pole terms to simu
late the more distant portions of the cuts.4 One could 
also use the boundary condition method8 or the inverse 
amplitude method.3*9 Alternatively, one could parame
trize the partial-wave amplitudes in such a way as to 
be able to sum them explicitly to obtain the total 
amplitude and, in addition, to account for cross cuts 
and some inelastic effects.10 Inelastic effects can also be 
simulated in the boundary condition model.16 

In any case, the crossing relations (2.8), in the form 
with (2.23) on the left and (2.14) on the right, which are 
generally directly usable outside the triangle, should 
prove helpful in determining the parameters appearing 
in any of these approaches. 

In future notes, we will discuss in detail the practical 
aspects of using our formulation of crossing relations in 
connection with these schemes. 

IV. APPLICATION TO LOW-ENERGY PION-PION 
SCATTERING IN THE J = / = l STATE 

In order to indicate the potential usefulness of the 
crossing relations, (3.1)-(3.3), we describe in this 

16 H. Goldberg and E. L. Lomon, Phys. Rev. 131, 1290 (1963); 
134, B659 (1964). 

section a crude calculation of low-energy pion-pion 
scattering in the 7 = 7 = 1 state. The calculation will be 
based on a simplified version of (3.2). This crossing 
relation will be used for the points (— \a<v s < — 1; 
vt>0) outside the triangle. In Appendix 1, it is shown 
that the main features of the low-energy ^-wave ampli
tude (e.g., resonance behavior) probably do not depend 
strongly on the s-wave scattering in the crossed channel. 
In particular, it is shown that P-(v8, — \ / t ) i n (3.2) 
tends to cancel the s-wave terms on the right-hand side 
of (3.2). If we assume that the cancellation is exact, we 
are left with the approximate ^-wave crossing relation 

cosdslASM-FSM^Ai1^) cos0*, (4.1) 

COS0S=— y/\ 5 > 

where the variables are related according to (2.15) and 
(2.16). I t is also shown in Appendix 1 that A^(v) 
—F^(v) for -\a<v^ — l, and Ax

l(v) for v small and 
greater than zero, are both represented approximately 
by 

v r 1 ImAfWdv' 
A x» W = At(v)— , , , , , (4.2) 

v'(v'-v) 

provided there are no resonances in pion-pion scattering 
for i><\a— 1. In other words, (4.1) becomes 

c o s M i H ^ ^ ^ l ^ i K " * ) cos0(, (4.3) 

where Ail(v) has the following properties: (1) it has a 
left-hand cut starting, not at *>= — 1 , but at v= — \a\ 
(2) its left-hand discontinuity for v<— \a is the same 
as that of A i1 (v); it varies as v at threshold; (4) it is 
approximately unitary and coincides approximately 
with i ^ W - W W for (-\a<v<-\) and ^ M in 
the physical region. For simplicity, we assume exact 
unitarity in the following analysis. 

A word should be said at this point concerning the 
validity of retaining only p waves on the right-hand 
side of (4.1). F waves have, of course, been eliminated 
from the left-hand side of (4.1) by suitably choosing 
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cos0s. In Appendix 2, we make a rough estimate of the 
higher partial-wave contributions to Al{vt, cos0*) on 
the basis of a simple / = / = 1 resonance exchange model. 
We find there that, for the region of interest in this 
calculation, the contribution is practically negligible. 

Our task now is simply (1) to write Ail(vs) in a 
suitably parametrized form which is unitary and has a 
left-hand cut starting at v— —\a, and (2) to determine 
the parameters by using (4.3). 

The N/D method1 furnishes the simplest means for 
constructing a unitary amplitude with the prescribed 
left-hand cut. We write 

A^{v) = N(v)/D{v) 

-^DWlmASWdv' 
N( 

v'(vf~v) 

(4.4) 

(4.5) 
7r y^o 

D W = 1 _ / ( ) , (4.6) 

where the threshold behavior of A^(v) has been ex
plicitly exhibited. R^(v) is the ratio of the total to 
elastic scattering cross section in the I=J=1 state. 

Now we are only interested in the amplitude for 
•~"i#^><4.5. In this case, we may use a parametri-
zation procedure suggested by Balazs,17 which is briefly 
outlined below. The reader is referred to Balazs' 
papers8,17 for details. 

After the change of variable / = — 1/x, (4.5) becomes 

N(v) -7 
IT J o 

A'a D{-\/x)lmA1
1{-\/x) 

dx . (4.7) 
1+xv 

In the range — \a<v<5, 0 < # < 4 / a , we may approxi
mate 1/(1+#*>) as17 

1 N Fi(x) 
» £ , (4.8) 

l-\-xv i _ 1 1+XiV 

with 

Fi(x) = Ib*(x-Xj)/Ib*i(xi--Xj) • (4-9) 

Balazs17 has made plausible the fact that the relative 
error in N(v), for (~la^ v<^5), due to the approxima

tion (4,8) and (4.9), is of the same order as the error 
in that approximation. After inserting (4.8) into (4.7), 
we have 

* fi .1 

IT % V~V{ X{ 

(4.10) 

where the /; , given by 

r4/a / i \ / i\Fi(x) 
/<= / D[~) ImAA — ) dx, (4.11) 

Jo \ xl \ x/ Xi 

are constants. In the following analysis, we take a « 1 6 . 
Balazs has shown5 that for this case, a reasonably 
accurate approximation of the form (4.8) is obtained 
by choosing N=2 with 

— l / f f i= j / i = — 6 .25 , 

- l/x2= v2= - 5 0 . 0 . 

Substitution of (4.10) into (4.6) gives 

v 2 fa(vi) 
D(v)^\-y{v)N(v)+~ £ , 

7T l _ l V—Vi 

2 / v \ m 

ir\v+l/ 

(4.12) 

(4.13) 

2/IH V2 

— ) tan"1 

T A H - I / 

/ v \1'2 

; O ^ ^ o o (4.14) 
\v+lJ 

VuT/ J ; 

• 1 ^ 0 (4.15) 

v+l 

1/2 

l n ( | ^-+-111/2H-1 ^ l 1 / 2 ) ; 

- o o O ^ - l , (4.16) 

where we have chosen the subtraction point ^ a s zero 
and have set Ri1^) = l.18 

As was previously stated, we determine the parame
ters f\ and / 2 by requiring (4.3) to be satisfied19 at 
several matching points. We use the points: 

(a) cos0*= 

(b) cos0s= 

(c) cos0«= 

-Vh 

-Vh 

- 2 . 2 5 , *v=1.0, cos0,= -1 .5O; 

= - 2 . 8 2 , ^ = 1 . 5 , cos0«=-1.42; 

: - 1 . 6 9 , vt=0.5, cos0*=-1.76. 

(4.17) 

17 L. A. P. Balazs, Phys. Rev. 125, 2179 (1962). 
18Bal£zs has shown (see the first paper of Refs. 5) that the deviation from unity of the inelastic factor Ri1^) for v^3 and 

the inadequacy of the parametrization of N(J>) for large v do not change the form of (4.10) and (4.13) for *>>4.5, which is the region 
of interest in our analysis. 

19 Because of the various assumptions made in obtaining the approximate Relation (4.3), we may only require it to hold for the 
real Darts involved. 
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FIG. 4. Stable and unstable solutions for the self-consistent 
p-wave amplitude equation (4.3). The stable solution, fi——7.7, 
x = f2/fi=—9.5, implies a scattering resonance at a cm. energy 
of 575 MeV with a half-width of about 120 MeV. 

Our procedure is to determine first / i and / 2 using two 
of the matching points in (4.17). The sensitivity of the 
solution to changes in the matching points is then 
examined by seeing how well (4.3), with the previously 
determined / i and /2 , is satisfied at the remaining 
matching point. 

The results of the calculation are illustrated in Fig. 
4. There we plot values of x= (/2//1) and l / / i which 
satisfy (4.3) at the three matching points of (4.17). 
We see that there are two solutions, one of which is 
unstable with respect to the matching points. We 
discard the unstable solution and assume that the 
stable one has some connection with reality. I t corre
sponds to / i = — 7.7 and / 2 = 7 3 . In Fig. 5, we plot 
N(y) and ReD(v) for the stable solution. The total 
p-w&ve cross section is given in Fig. 6. We see that our 
solution corresponds to an 7 = 7 = 1 resonance at 
V=VR = Z2 (575-MeV total cm . energy) with a half-
width of about 120 MeV. 

These results are very similar to those obtained by 

FIG. 5. N(y) and 
ReD(p) for the stable 
solution of (4.3). 

Balazs5 using a fixed s dispersion relation for the 
determination of parameters. I t is instructive to com
pare Balazs' method with the one employed here. 

In Balazs' approach, we let a—» 00 in (3.8) [or more 
generally (2.29) with 1=1= 1] to obtain 

4 /•« / 2[>+l]\ 
A^(vs)=— / <fcCi(i+ 

TVs Jo \ V, I 

XZ/i ; iodd«/ j (2/+l)P,{l+2-
v J 

XlmAfiv). (4.18) 

Note that as a-> 00, F£(v)-+A£(v). (4.18) is valid 
for —9^v8^0.1 Balazs shows, on the basis of a con
jectured high-energy Regge behavior, that the integral 
in (4.18) is convergent. By retaining only the Ai1 term 
in the integral, and requiring Ai1 to satisfy (4.18) and 
the corresponding derivative relation at one point, he 

FIG. 6. The total 7 = 7 = 1 partial wave cross section { = {12ic/v) 
X[y/(>+l)]Im4i1( i ' )} calculated from (4.4), (4.10), (4.13), and 
(4.14) with the parameter values / i = —7.7; /2 = 73. The unit for 
the cross section is the square of the pion Compton wavelength. 

determined the equivalent of our /1 and /2 . His deter
mination of the parameters, however, was not as 
straightforward as ours. In order to make his calcu
lation tractable, he inserted a delta function resonance 
form for ImA^(v) into the integral of (4.18), deter
mined the parameters equivalent to /1 and / 2 in terms 
of the initially assumed resonance parameters, and 
then checked to see whether the amplitude with these 
parameters exhibited a resonance with the initially 
assumed characteristics. This process was repeated until 
a self-consistent solution was obtained. This procedure 
is similar in spirit to the usual bootstrap calculations,7 

although the Balazs method presumably treats the 
distant left-hand singularities in Ai1 more realistically. 

The two main difficulties of Balazs' formalism are 
(1) the explicit appearance, in his fixed s dispersion 

20 There have, however, been several recent attempts to deter
mine the Regge trajectory parameters in a self-consistent way. 
See, e.g., M. Bander and G. L. Shaw, Stanford University, 1964 
(to be published). 
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relation, of high-energy scattering contributions which 
must either be ignored or described, for example, in 
terms of empirically determined Regge trajectories,5-20 

and (2) the fact that resonances must be assumed 
a priori. 

The above features are absent in our approach. We 
subtract from the amplitudes only the low-energy 
contribution to the fixed s dispersion relations. The 
resulting crossing relations, formulated so as to be valid 
outside the small triangle, involve explicitly only low-
energy scattering. The implicit high-energy effects 
reflected by the singularities of the partial wave ampli
tudes far from the low-energy region, are determined 
self-consistently by appropriately parametrizing them 
and applying the crossing relations. The existence of a 
resonance arises naturally as a result of direct parameter 
determination and need not be assumed from the start. 

SUMMARY AND CONCLUSIONS 

In this paper we have introduced a representation 
for the pion-pion scattering amplitude which is ex
pressed in terms of the ordinary partial-wave ampli
tudes, but whose region of validity is considerably 
greater than that of the usual Legendre expansion. 
This representation makes possible the direct appli
cation of crossing relations in a much larger region than 
was previously available for such use. A plausible low-
energy approximation to the exact crossing relations, 
which involves only the s- and p-wave amplitudes, was 
presented. 

The availability of useful crossing relations for 
physical scattering angles, outside the small triangle 
bordered by lines s=Q, 2=0, and u=0 in the Mandel-
stam diagram, should be of value in any program which 
involves trial amplitudes containing parameters to be 
determined (at least in part) by crossing relations. The 
extent to which our representation of the amplitudes 
will help provide a self-contained scheme for low-energy 
scattering (i.e., for generation of the low-energy s- and 
^-wave amplitudes with no, or perhaps one, adjustable 
parameter) must now be investigated. The crude 
calculation of low-energy ^-wave scattering, in which 
the energy and width of the I=J=1 (p) resonance 
were estimated, gives some indication of the possible 
usefulness of our representation in more elaborate 
calculations. It should be stressed again that the 
existence of the resonance was a direct result of the 
application of crossing symmetry and unitarity. The 
a priori assumption of its existence was not necessary. 
Also, high-energy effects entered the crossing relations 
only through the "distant" singularities of the low 
partial-wave amplitudes and were determined "self-
consistently" (see the last paragraph of Sec. IV). 

We are concurrently investigating by means of a 
high-speed computer the possibility of using our for
mulation of the crossing relations with trial amplitudes 
of the type discussed in Refs. 5, 8, and 10 in a self-

consistent low-energy program not involving the 
simplifying assumptions of Sec. IV. 
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APPENDIX 1 

Here we attempt to partially justify the simplifying 
assumptions made in Sec. IV. 

Let us examine carefully the crossing relation (3.2). 
First consider the modified ^-wave amplitude A^(vs) 
-Fil(vs). From (2.29) and (2.30), it follows that F?{y) 
is analytic in vs except for a branch cut in the interval 
(— c o o ^ — 1) on the real axis. The imaginary part 
of Fil(vs) along the cut is 

ImFJiv.)'-
1 ru^ i 2[>+lJ \ 
- / *P{ 1+ ) 

X Z an £ PA 1 
1 J odd (7=1) 

I even (I =0) 
O^P) 
X l m ^ M , (Al.l) 

tf(*.)=-(ivH); -ia^vst-l 

= - ( - i a + l ) ; -™<vsZ-la, (A1.2) 

where we have made the substitutions s=4:(v8+l), 
s=4(v+l ) in (2.29). The imaginary part of F£(y9) 
coincides with that of Ai}(vs) in the interval (—\a<^ vs 

^ - 1 ) . For large v„ F^lv,)* (mvs)/vs. Also, FJfa) 
oc vs at threshold. Thus, we may represent F^(v^) as 

F£(v,) = F£*\v9)+*F£{v9) 

-*« dvlmF^v) 

7T J_< 

A/V (*,) = -

„ v {v—vs) 
1 dvlmA^iv) 

(A1.3) 

(A1.4) 

IT J-\a v{v—Vs) 

Note that Ail(vs) satisfies1 

vs f""1 dv 1mA i 
AJ(v.) = - / — 

7T J_oo v(v~ V 

~ldvlmA^(v) 

+ 
v8 r^dvImAi 

T Jo v{v—V 

dv ImA i1 (v) 

r (A1.5) 

Now if there is no resonance behavior in ir-ir scat
tering for *><ia— 1, it is reasonable to assume that 
| ImF 1

1W|«|Im^ 1
1W|, for v^-\a [see (Al.l) and 
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(A1.2)] and also that the effect of the discontinuity of 
A£(v) in the interval ( — \ a ^ v ^ — 1) should not be 
very important in the physical region. In other words, 
Ail(v) given by 

A1
1(v)^A1

1(v)~AF1^(v) (A1.6) 

should be approximately the same as A^(v)—F^(v) 
for v considerably greater than — \a and less than — 1; 
and should coincide approximately with A£(v) in the 
physical region. We have thus made plausible the 
statements made in connection with relations (4.2) and, 
(4.3). 

We will now consider the term Fl(v8, cosOs= — V I ) 
in (3.2) and show that there might be a considerable 
cancellation between the s-wave terms in F1 and those 
on the right-hand side of (3.2). After the change of 
variables 

* = 4 ( H - 1 ) , 

-2y . ( l -cosf f . ) = / = 4 ( ^ + l ) , (A1.7) 

- 2 v , ( l + c o s ^ ) = w = 4 - j - i = 4 ( v u + l ) , 

vu=~2 — vs—vt, 

(3.5) becomes 

1 
Fl(vs,cosds) = -

*a~l dv r 

U W 0 ° « 
i v— vA-

3 r 2 ( ^ + 1 ) -

+- 1+ 
2L v . 

r ^ - 1 dv 

I' 
1 fi"-1 dv r 
- / | I n u V M 
IT J o V—VUL 

ImA^^-IImAo2^) 

3 

"J I m ^ i 1 ^ ) - ! I m ^ 0
2 W (A1.8) 

The first term in (A1.8) is simply the Cauchy integral 
contribution to the right-hand side of (3.2), from the 
interval 0<^v^\a—l. The second term is the Cauchy 
integral contribution, from the interval O^v^^a—1, 
to the right-hand side of (3.2) with vt replaced by vu, 
(vs fixed). Now for points in the interval { — \a<vs 

< —1) and cos0s= —\/h vt is greater than zero and 
vu is less than — 1 (see Fig. 2). Therefore, in this region, 
the second term of (A1.8) should be of less importance 
than the first. The s-wave parts of the first term 
should partially cancel the s-wave contributions to the 
left-hand side of (3.2). Similar cancellations should 
occur for ^-wave contributions. However, the Cauchy 
integral contribution, from the low-energy scattering 
region, should be much more important for s waves 
than for p waves (we assume no p-w&ve resonances for 

v<\a—\). Therefore, we shall only assume important 
cancellations for s waves. Exact cancellation for s waves 
was assumed in Sec. IV. 

APPENDIX 2 

We discuss here the contributions of higher partial 
waves (/>1) to Al(vt, cos6t) which were dropped in 
obtaining the approximate relation (4.3). The I=J=1 
(p) resonance-exchange model will be used to estimate 
the neglected terms. This model corresponds to the 
lowest order scattering given by the effective Hamil-
tonian 

H=fpvvQlt*(i:Xdp'n); (A2.1) 

or, alternatively, to the insertion of the zero-width 
approximation 

ImA iz(v) = TrYvRd(v— vR)5n$ii (A2.2) 

into the integrands, (2.24), (2.25) of the dispersion 
relation (2.12). VR is the cm. momentum squared at 
resonance and the parameter T is related to the half-
width, Wi/2, of the p resonance by5 

ZVR' ,3/2 

where W1/2 is in units of the pion rest energy. Experi
mentally21 VR-5.7 and PF1/2«1.0 so that T«0.25. 

The p exchange contribution to Al(vh cosdt) is 

3T 
A1(vh cosdt)—— 

r2(vt+l)+vi(l+cosdt) 

2 L 2 ( ^ + l ) + ^ ( l - c o s 0 < ) 

2(vt+l)+vt(l-cosdt)-

2(vR+l) + vt(l+cosdt). 

= 23 (2l+l)Pl{cosdt)Al^(vi) 
l (odd) 

2{vR+2) X A^(vt)-=3vC 

/ | 2 ( , , + 2 ) X 2 W / 

\ v, 7 (2/4-1) ! \ 

2fa+l)\ 

• 3 T { 

vt 

vt 

vt 7 (2/+1) 1X2(^+1)7 

1+1 

(A2.3) 

(A2.4) 

(A2.5) 

Now at the second matching point (b) of (4.17), we 
find that the stable solution of (4.3) corresponds to 
(see Fig. 5) 

Re[3 c o s M 11 (vt)l« " 0.80. (A2.6) 

The higher partial-wave contributions [(A2.3) minus 
the ^-wave contribution] to A1^^ cos6t) sue found to 
be «0.022, which is small compared to (A2.6). 

21 A. Erwin, R. March, W. D. Walker, and E. West, Phys. Rev. 
Letters 6, 628 (1961). 


